FDA OC/ORA Office Building Silver Spring, MD

Structural Senior Thesis Presentation 2010 The Pennsylvania State University

- Introduction
- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

Structura

• Introduction

- Presentation Outline
- Existing Conditions
- Goals and Objectives
- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

•Function:

•Size:

•Building Name: FDA OC/ORA Office Building •Location and Site: Silver Spring, MD Office Building with Mixed Use 500,000 S.F. Building 31: 4 Stories Building 32: 5 Stories •Number of Stories: •Final Contract Cost: \$110 Million •Delivery Method: Lump Sum Project

Existing Conditions

Divided into four wings Façade is a Brick Veneer Curtain Wall Structure

Reinforced Concrete Columns supported with spread footings on GeoPiers Reinforced Concrete Two-Way Flat Slab

Existing Conditions

• Introduction

- Presentation Outline
- Existing Conditions
- Goals and Objectives
- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

Goals and Objectives

•Structural Redesign

• Design a lateral resisting system to decrease the eccentric effects of Wing B.

•Connection Design

• Design typical connections throughout the structure to support the required loading

Progressive Collapse Design
Study the design of structures to resist progressive collapse.

Impacts on New Design

•Look at the cost and Schedule impacts for the new structural design. •Revaluate the mechanical system for the new structural system.

Structural Redesign

Introduction

- Structural Redesign
 - Building Loads
 - Steel Framing
 - Lateral Framing
 - Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

•Gravity Loads

	Live Loads											
	De	Design		ASC	E 7-05							
Location	kPa	psf	psf	psf								
Office	3.8	79.36	80	50								
Typical Roof	1.5	31.33		20								
Public Lobbies	4.8	100.25		100								
Mech Room	7.3	152.46		150	(Assumed)							
Telecom Room	12	250.63	250	150								
Redestrian Bridge	4.8	100.25		60								
Balconies	4.8	100.25		100								
High Density Filing	12	250.63		250	(Assumed)							
Green Roof	1.5	31.33		100								

Dead Loads									
	psf								
Superimposed Dead Load (MEP, Ceiling)	15	(Assumed)							
oofing System	40	(Assumed)							
Aechanical Unit	150	(Assumed)							
xteior Curtain Wall	30	(Assumed)							
trium Cutrain Wall	20	(Assumed)							
Mechanical Pentouse Walls	20	(Assumed)							

Structura

Structural Redesign

• Introduction

• Structural Redesign

- Building Loads
- Steel Framing
- Lateral Framing
- Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

•Lateral Loads

Design Wind Loads in N-S Direction											
	External Windward	External Leeward	Base She	ear (kips)							
	Load (kips)	Loads (kips)	1.0W	1.6W							
Level 1	0	0									
Level 2	31.771	16.907	48.678	77.884							
Level 3	33.480	15.398	48.878	78.205							
Level 4	36.700	15.398	52.098	83.356							
level 5	39.327	15.398	54.725	87.560							
Roof	25.274	9.578	34.851	55.762							
Parapet	5.010	1.879	6.889	11.022							
Base Shear			246.119	393.790							

		Seismic Loads			-
Level	Story Weight w_x (kips)	Height h _x (ft)	Lateral Force F _x (Kips)	Base Shear (kips)	
2	1711.82	15.82	17.12		
3	1696.03	28.31	16.96		
4	1696.03	41.2	16.96		
5	1696.03	54.09	16.96		
Roof	2680.3	66.98	26.80		
	1 1		ΣF, = V, =	95	kips

Design Wind Loads in E-W Direction External Windward Loads External Leeward (kips) Base Shear (kips) Level 1 0 0 1.0W Level 2 14.675 7.809 22.484 35.974 Level 3 15.464 7.112 22.575 36.122 Level 4 16.951 7.112 24.064 38.502 level 5 18.165 7.112 25.277 40.443 Roof 11.674 4.424 16.098 25.756 Parapet 2.314 0.868 3.182 5.091 Base Shear Image: Shear Image: Shear Image: Shear Image: Shear

Gravity Loads Location Office Typical Roof Public Lobbies Mech Room Telecom Room Redestrian Bridge Balconies High Density Filing Green Roof

Dea
Superimposed Dead
Load (MEP, Ceiling)
oofing System
echanical Unit
teior Curtain Wall
rium Cutrain Wall
Mechanical Pentouse
Walls

m Love

Structura

	Live Loads			
De	esign	GSA 05	ASCI	E 7-05
kPa	psf	psf	psf	
3.8	79.36	80	50	
1.5	31.33		20	
4.8	100.25		100	
7.3	152.46		150	(Assumed)
12	250.63	250	150	
4.8	100.25		60	
4.8	100.25		100	
12	250.63		250	(Assumed)
1.5	31.33		100	

.oads	
psf	
15	(Assumed)
40	(Assumed)
150	(Assumed)
30	(Assumed)
20	(Assumed)
20	(Assumed)

Structural Redesign

- Introduction
- Structural Redesign
 - Building Loads
 - Steel Framing
 - Lateral Framing
 - Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

8							9	200
9							50	- Pervento
							1	15-20
							25	位:"现
							27	201000
4111							11	10.00
						eentitiis.	1	1.00
A) muz gloog	N29.5	****2 #	V042 g	11112 g	W1622 g	with the second	NHEZ.	- nam (re)
A) Simaa looga Simaa looga	NG49 -	WHERE B		10162 11162	W1622		Weiz.	nas feit
A) Minut glotteg Ginnen glotteg Altinu	1154.9 11462 11462	WHERE B		1742 1742	W182 W182 W182	W162 0	macz.	
Maria Jung Sanan Jung Sanan Jung Sanan Maria Jung	11019 11142 11142 11142 11142	Wield Wield	1019622 1019622 1019622 1019622	97962 97962 97962	W1822 W1822 W1822 W1622	Wikiz Wikiz Wikiz	West West	
Manage Strang of Strang of Strang Str	W049	wind wind wind wind	101622 101622 101622 101622	17962 17962 17962 17967 17967	W1602 W1602 W1602 W1602 W1602	W162 g W162 g W162 g W162 g	Wield Wield Wield Wield Wield	
The second	W049 W1407 W1407 W1407 W1407 W1407 W1407	Wield Wield Wield Wield Wield		19962 19962 19962 19967 19967	WING2 N WING2 N WING2 N WING2 N WING2 N	W1622 g W1622 g W1622 g W1622 g W1622 g W1622 g W1622 g	Minitz Minitz Minitz Minitz Minitz Minitz Minitz Minitz Minitz	

•Steel Framing

Roof Floor Framing

the loss

and a second sec

Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual

Adam Love

Structura

Structural Redesign

Conclusions

• Questions

•

Introduction

 Building Loads • Steel Framing

				1. 149em 1-	14940	in the second									and a second	Contract of the local division of the local	14
				12			ی ه								wasa wasa wasa	Numeron Numeron Numeron	VIEWAL
06/2		WHERE .	when a	WHOR .	Wan In	-	al a	nuo du	with the get	mm.	WHARE .	-	W1662	1179622.	mai	man	Ima
162.		When when	where a		E ware E	900	A	man By	19 1142 J					W162_	Winds -	W5245 3	- year
1402	weeks	Wheez	. White22	- medr	1 10	1	13	MDAS4 p	Web	al mace	Whee2	W16622	water i	- week	unada a	1	L'orac
200-3	1990	wind	ana a	man	Non P	131	1	Without P		- with	VILACO S	VITACT	VIDE				-
-	UNACE .		1 111400	- mail	1 115214 11	63	1	12.2	1 1 VAND	1 10967	wind -	when a	wood .	With T	I HANT	1 waxe	She
-					ivesor .	9	14	12.2	A R wow			- W140	- W160			weet	13

Roof Floor Framing

Structural Redesign

- Introduction
- Structural Redesign
 - Building Loads
 - Steel Framing
 - Lateral Framing
 - Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

Lateral Analysis

RAM Model 1

RAM Model 2

	Center of Rigidity Compariosn for RAM Models													
	RAM N	1odel 1	RAM N	1odel 2	COM of B	oth Models								
	X (ft) Y (ft)			Y (ft)	X (ft)	Y(ft)								
Roof	85.26	41.25	128.47	41.35	154.33	49.98								
Floor 5	91.23	41.02	131.95	41.09	142.63	41.12								
Floor 4	104.65	41.025	140.67	41.13	142.64	41.12								
Floor 3	126.14	40386	153.38	40.86	142.65	41.11								
Floor 2	158.01	40.42	171.24	40.32	138.75	40.98								
	1	* RAM Mod	el 2 adds Br	ace at Grid	Н									

Structural

Structural Redesign

Introduction

Structural Redesign

- Building Loads
- Steel Framing
- Lateral Framing
- Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

	3D Model Period Comaprisons													
F	RAM Model 1			RAM Model 2				ETABS Model						
	Direction	Period (s)			Direction	Period (s)			Direction	Period (s)				
1	2.145	Z		Mode 1	1.4798	Z		Mode 1	1.1971	Z				
2	1.2959	Х		Mode 2	1.3521	Х		Mode 2	1.0513	Х				
3	1.1244	Z		Mode 3	1.1173	Z		Mode 3	0.8627	Z				
Braced Frames at Core			*A	dditional B	ace	*Same as RAM Model 2			odel 2					

•Lateral Analysis

	12.12	
-		
1		
-		

RAM Model 1

RAM Model 2

Center of Rigidity Compariosn for RAM Models						
	RAM Model 1		RAM Model 2		COM of Both Models	
	X (ft)	Y (ft)	X (ft)	Y (ft)	X (ft)	Y(ft)
Roof	85.26	41.25	128.47	41.35	154.33	49.98
Floor 5	91.23	41.02	131.95	41.09	142.63	41.12
Floor 4	104.65	41.025	140.67	41.13	142.64	41.12
Floor 3	126.14	40386	153.38	40.86	142.65	41.11
Floor 2	158.01	40.42	171.24	40.32	138.75	40.98
	* RAM Model 2 adds Brace at Grid H					

Structural Redesign

Structural Redesign

- Building Loads
- Steel Framing
- Lateral Framing
- Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

notural

Structural Redesign

Conclusions

• Questions

•

Introduction

 Structural Redesign Building Loads Steel Framing • Lateral Framing Connection Design • Progressive Collapse

Structural Redesign

Structural Redesign

- Building Loads
- Steel Framing
- Lateral Framing
- Connection Design
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions

Structura

Structural Redesign

Introduction

 Conclusions • Questions

 Structural Redesign Building Loads

Steel Framing

 Lateral Framing Connection Design

• Progressive Collapse

- Introduction
- Structural Redesign
- Progressive Collapse
 - Basic Concepts
 - GSA Standards
 - DOD Standards
 - Design (GSA Method)
- Mechanical Considerations
- Conclusions
- Questions

Progressive Collapse

•Basic Concepts

- What is Progressive Collapse and How is it designed for?
 Collapse or Disproportionate Collapse
 Connection Design, Redundancy
- Other methods to protect buildings against unforeseeable events.

•Standoff Distance, and Blast Resistant Design

Methods of Design
 U.S. General Services Administration Standards (GSA)
 Department of Defense Standards (DOD)

Structu

- Introduction
- Structural Redesign
- Progressive Collapse
 - Basic Concepts
 - GSA Standards
 - DOD Standards
 - Design (GSA Method)
- Mechanical Considerations
- Conclusions
- Questions

Progressive Collapse

- Progressive Collapse Analysis and Design Guideline
 - Design Guidance
 - Provide discrete beam-to-beam continuity
 - Connection Resilience, Redundancy, and Rotation
 - •Analysis Procedure
 - Linear Elastic Static Analysis Approach
 Use of non linear analysis is acceptable
 Recommends use of 3D Modeling.
 - •2D Modeling is more conservative •Exterior and Interior Considerations •Load = 2(DL + .25LL)

Acceptance Criteria • Demand Capacity Ratios: DCR = Q_{UD} / Q_{CE} Analyze for the instantaneous loss of a column for one floor above grade (1 story) located at or near the middle of the short side of the building.

- 2 Analyze for the instantaneous loss of a column for one floor above grade (1 story) located at or near the middle of the long side of the building.
- 3 Analyze for the instantaneous loss of a column for one floor above grade (1 story) located at the corner of the building.

Structura

- Introduction
- Structural Redesign
- Progressive Collapse
 - Basic Concepts
 - GSA Standards
 - DOD Standards
 - Design (GSA Method)
- Mechanical Considerations
- Conclusions ٠
- Questions

Progressive Collapse

•Analysis Methods for Alternate Path Method

- Linear Static Method
- Limited to structures that are considered Regular.
 - •If irregularity exist, linear static can be used of DCR is less than 2.0. • Demand forces are compared to the acceptance criteria.

Linear Static A D = Ω_{LD}[(.9 or 1.2)D + (.5L 0r .2S)]

= Ω_{LF}[(.9 or 1.2)D + (.5L 0r .2S)]

Nonlinear Static Ana

= [(.9 or 1.2)D + (.5L 0r .2S)]

= Ω_N[(.9 or 1.2)D + (.5L Or .2S)]

 $= \Omega_{\rm http}[(.9 \text{ or } 1.2)D + (.5L \text{ Or } .2S)]$

[(.9 or 1.2)D + (.5L Or .2S)] .002TP

= .002EP

 $\Phi m Q_{CE} \ge Q_{UD}$

 $\Phi Q_{CL} \ge Q_{UF}$

 $\Phi Q_{CL} \ge Q_{LF}$

 $\Phi Q_{c1} \ge Q_{c1}$

- Nonlinear Static Method
 - No DCR or regularity limitations
 - Demand forces are compared to the acceptance criteria.
- Nonlinear Dynamic Method
- •Gravity and lateral loads are applied to the structure

• Unified Facilities Criteria: Design of Buildings to Resist Progressive Collapse

• Three Methods of Design and Analysis •Tie Force Method, Alternate Path Method, and Enhanced Local Resistance

•Alternate Path Method Analysis Procedures • Linear Static, Nonlinear Static, and Nonlinear Dynamic • Primary and Secondary Elements Stories to Analyze

- Introduction
- Structural Redesign
- Progressive Collapse
 - Basic Concepts
 - GSA Standards
 - DOD Standards
 - Design (GSA Method)
- Mechanical Considerations
- Conclusions •
- Questions

Progressive Collapse

- Progressive Collapse Design
 - Using the GSA Method, and Nonlinear Analysis
 Exterior moment frame along Grid 1 chosen for analysis
 - Application of Load and Collapse Area RL = 326 kips FL = 277.1 kips Area of collapse = 1627 S.F.
 - Progressive Collapse Design

	Progressive Collapse Design Summary							
	Original	Applied	Total Load	Required Mp (ft-		New		
	Design	Load (Kips)	(Kips)	kips)	DCR	Design		
Roof	W14x22	326	326	1604.5	3	W21x62		
5th	W14x22	277.1	603.1	2968.3	2	W33x118		
4th	W14x22	277.1	880.2	4332.1	3	W24x146		
3rd	W14x22	277.1	1157.3	5695.8	3	W33x141		
2nd	W14x22	277.1	1434.4	7059.6	3	W33x169		

- Introduction
- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
 - Feasibility Study
 - Supply Duct Design
- Conclusions
- Questions

Mechanical Coordination

- Mechanical Coordination and Design
 - Feasibility Study
 Original Design
 - Airflow Assumptions

 - Existing airflow
 Assumed airflow velocity
 - New Mechanical Design

Mechanical Design				
	cfm	v (ft/s)	A (ft^2)	
Duct 1	3385.97	20	2.82	
Duct 2	2101.93	20	1.75	

Mechanical Design Summary					
		Width	Heigth		
Original Design	Duct 1	29.53"	15.75"		
	Duct 2	25.59"	11.81"		
New Design	Duct 1	35.5"	12"		
	Duct 2	24"	11"		

- Introduction
- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
- Conclusions
 - Conclusions/ Lessons Learned
 - Ideas to Build On
- Questions

Conclusion

- Conclusions
 - Structural redesign
 - A lighter structure
 - Minimum impact on architecture
 - Lateral System effective for deflection, Torsion still a problem,
 - Progressive Collapse
 GSA Standards vs. DOD Standards
 - Cost and Schedule Analysis •Decrease cost •Faster schedule •Local Market Considerations
 - Mechanical Coordination Acceptable redesign

- Introduction
- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
- Conclusions
 - Conclusions/ Lessons Learned
 - Ideas to Build On
- Questions

Conclusion

• Ideas to Build on/ Lessons learned

- Gravity System
 - The gravity design is much lighter, vibration and acoustical issues should be considered
 - Connections designed were very effective, with minor constructability issues.

Lateral System

•The current design could be improved to better minimize eccentric effects

Progressive Collapse

• A 3D Model should be developed to further study progressive collapse.

• Current moment connections are not efficient

Conclusions

Structural redesign

Progressive Collapse

- system.
- Mechanical Coordination system.

• A lighter structure

• Minimum impact on architecture

• Lateral System effective for deflection, Torsion still a problem,

• GSA Standard are more conservative for progressive collapse.

•DOD Standard is more specialized for each building

 Cost and Schedule Analysis •Initial results conclude a decrease cost and faster schedule for the new structural

•However, local market favors Two-way Flat Slab Construction.

• The mechanical ducts could be effectively resized to fit under the new structural floor

Introduction

- Structural Redesign
- Progressive Collapse
- Mechanical Considerations
- Conclusions
- Questions
 - Questions
 - Acknowledgements

Questions

Thesis Research

Course Materials: AE 597A "Advance Computer Modeling" "Steel Connection Design" AE 534 AE 403 "Advanced Steel Design"

Geschwinder, Louis F. Unified Design of Steel Structures. John Wiley & Sons Inc., 2008.

Structural Standards:

ASCE 7-05, Minimum Design Loads for Buildings and other Structures ASCE 41-06, Seismic Rehabilitation of Existing Buildings

Design Standards:

Steel Construction Manual 13th edition, American Institute of Steel Construction, 2005.

Unified Facilities Criteria. Design of Buildings to Resist Progressive Collapse. Department of Defense, July 2009.

General Services Administration. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects. U.S. General Services Administration, June 2003.

Acknowledgements

Mike Stigliano

• Tompkins Builders •Jeremy Wong

• Turner Construction (For Providing the building documentation and support)

•The Pennsylvania State University • Dr. Linda Hanagan • Dr. Louis Geschwindner • Dr. Ali Memari Professor Parfitt Gaby Issa-El-Khoury

